• Research
  • People
  • Publications
  • Developed tools
  • Opportunities
  • Links
  • Research
  • People
  • Publications
  • Developed tools
  • Opportunities
  • Links

Publications

For an updated list of publications, please visit Dr Muller's Google Scholar page
Papers in review are marked with an asterisk (*).
Student and postdoc mentees are underlined and marked with #
Click on the title to access abstract, then click on the authors to access preprints

10. Monitoring small reservoirs storage from satellite remote sensing in inaccessible areas

6/19/2021

 
Avisse, N. , Tilmant, A, Müller, M.F., Zhang, H (2017), Hydrology and Earth Systems Science, doi: 10.5194/hess-21-6445-2017
In river basins with water storage facilities, the availability of regularly updated information on reservoir level and capacity is of paramount importance for the effective management of those systems. However, for the vast majority of reservoirs around the world, storage levels are either not measured or not readily available due to financial, political, or legal considerations. This paper proposes a novel approach using Landsat imagery and digital elevation models (DEMs) to retrieve information on storage variations in any inaccessible region. Unlike existing approaches, the method does not require any in situ measurement and is appropriate for monitoring small, and often undocumented, irrigation reservoirs. It consists of three recovery steps: (i) a 2-D dynamic classification of Landsat spectral band information to quantify the surface area of water, (ii) a statistical correction of DEM data to characterize the topography of each reservoir, and (iii) a 3-D reconstruction algorithm to correct for clouds and Landsat 7 Scan Line Corrector failure. The method is applied to quantify reservoir storage in the Yarmouk basin in southern Syria, where ground monitoring is impeded by the ongoing civil war. It is validated against available in situ measurements in neighbouring Jordanian reservoirs. Coefficients of determination range from 0.69 to 0.84, and the normalized root-mean-square error from 10 to 16 % for storage estimations on six Jordanian reservoirs with maximal water surface areas ranging from 0.59 to 3.79 km2.

Comments are closed.

    Categories

    All
    Armed Conflict
    Bangladesh
    Cambodia
    Catchment Science
    Causal Inference
    Change Attribution
    Climate Change
    Flow Duration Curve
    Food
    Game Theory
    Geostatistics
    Global Health
    Groundwater
    Himalaya
    Large Scale Land Aquisition
    Micro Hydropower
    Middle East
    Nepal
    Remote Sensing
    Reviews And Opinion Papers
    Rural Electrification
    Salinization
    Sociohydrology
    South Asia
    Stochastic Hydrology
    Streamflow Variability
    Switzerland
    Transboundary Water
    Water System Analysis
    Web Platform

    RSS Feed

Powered by Create your own unique website with customizable templates.