Resources
How to structure an intro/summary paragraph:
https://www.nature.com/documents/nature-summary-paragraph.pdf
Geospatial Packages in R
https://twitter.com/yohaniddawela/status/1772595205042032927?s=20
Hi Res Imagery Resources:
https://twitter.com/yohaniddawela/status/1777300378087731378
Satelite-based income (or GDP) determination:
https://twitter.com/yohaniddawela/status/1779830051212578959
Great GEE datasets:
https://gee-community-catalog.org/projects/global-mining/
How to write a paper:
http://www.howtowriteanacademicpaper.com/index.html
GEE textbook
https://www.eefabook.org/
Misc tips for good non-fiction writing
https://www.julian.com/guide/write/intro
How to design a good poster:
https://twitter.com/iamscicomm/status/1532895329045168133
Awesome teaching resources for causal inference
http://mixtape.scunning.com
https://nickchk.com/causalgraphs.html
Generic advice for grad students
https://medium.com/@paul.niehaus/doing-research-18cb310529e0
Academia -> industry advice
https://twitter.com/LifeAfterMyPhD/status/1549496279163580416
Best intuition on the Lagrange multipliers approach to multivariate constrained optimization (a workhorse in math modeling):
https://youtu.be/5A39Ht9Wcu0
Cool data analytics class materials using R and tidyverse (from Nick Hagerty at Montana State)
https://github.com/msu-econ-data-analytics/course-materials?tab=readme-ov-file
https://www.nature.com/documents/nature-summary-paragraph.pdf
Geospatial Packages in R
https://twitter.com/yohaniddawela/status/1772595205042032927?s=20
Hi Res Imagery Resources:
https://twitter.com/yohaniddawela/status/1777300378087731378
Satelite-based income (or GDP) determination:
https://twitter.com/yohaniddawela/status/1779830051212578959
Great GEE datasets:
https://gee-community-catalog.org/projects/global-mining/
How to write a paper:
http://www.howtowriteanacademicpaper.com/index.html
GEE textbook
https://www.eefabook.org/
Misc tips for good non-fiction writing
https://www.julian.com/guide/write/intro
How to design a good poster:
https://twitter.com/iamscicomm/status/1532895329045168133
Awesome teaching resources for causal inference
http://mixtape.scunning.com
https://nickchk.com/causalgraphs.html
Generic advice for grad students
https://medium.com/@paul.niehaus/doing-research-18cb310529e0
Academia -> industry advice
https://twitter.com/LifeAfterMyPhD/status/1549496279163580416
Best intuition on the Lagrange multipliers approach to multivariate constrained optimization (a workhorse in math modeling):
https://youtu.be/5A39Ht9Wcu0
Cool data analytics class materials using R and tidyverse (from Nick Hagerty at Montana State)
https://github.com/msu-econ-data-analytics/course-materials?tab=readme-ov-file
Collaborator (partial list)
Sally Thompson (University of Western Australia)
Steve Gorelick (Stanford)
Michèle Müller (Notre Dame)
Gopal Penny (Notre Dame)
Diogo Bolster (Notre Dame)
Jennifer Tank (Notre Dame)
David Dralle (USDA)
Nathan Karst (Babson)
Kevin Roche (Boise State)
Ashok Gadgil (Berkeley)
Amaury Tilmant (Laval)
Maggi Kelly (Berkeley)
Morgan Levy (UCSD)
Shahjahan Mondal (BUET)
Siraj Islam (icddr,b)
Paolo d'Odorico (Berkeley)
Kyle Davis (Delaware)
Nathan Mueller (Colorado State)
Cristina Rulli (Politecnico di Milano)
Jampel Dell'Angelo (VU Amsterdam)
Sandra Eckert (University of Bern)
Meredith Niles (University of Vermont)
Steve Gorelick (Stanford)
Michèle Müller (Notre Dame)
Gopal Penny (Notre Dame)
Diogo Bolster (Notre Dame)
Jennifer Tank (Notre Dame)
David Dralle (USDA)
Nathan Karst (Babson)
Kevin Roche (Boise State)
Ashok Gadgil (Berkeley)
Amaury Tilmant (Laval)
Maggi Kelly (Berkeley)
Morgan Levy (UCSD)
Shahjahan Mondal (BUET)
Siraj Islam (icddr,b)
Paolo d'Odorico (Berkeley)
Kyle Davis (Delaware)
Nathan Mueller (Colorado State)
Cristina Rulli (Politecnico di Milano)
Jampel Dell'Angelo (VU Amsterdam)
Sandra Eckert (University of Bern)
Meredith Niles (University of Vermont)