• Research
  • People
  • Publications
  • Developed tools
  • Opportunities
  • Links
  • Research
  • People
  • Publications
  • Developed tools
  • Opportunities
  • Links

Publications

For an updated list of publications, please visit Dr Muller's Google Scholar page
Papers in review are marked with an asterisk (*).
Student and postdoc mentees are underlined and marked with #
Click on the title to access abstract, then click on the authors to access preprints

15. On the Effect of Nonlinear Recessions on Low Flow Variability: Diagnostic of an Analytical Model for Annual Flow Duration Curves

6/19/2021

 
Karst, N., Dralle, D. and Müller M.F. (2019), Water Resources Research, doi: 10.1029/2019WR024912
Predicting the proportion of the water year a given stream will remain at or above various flow thresholds is critically important for making sound water management decisions. Flow duration curves (FDCs) succinctly capture this information using all data available over some historical period, while annual flow duration curves (AFDCs) instead use data from each individual water year. Analyzing the population of AFDCs, and in particular the tails of this distribution, can allow water managers to better prepare for years with extreme streamflow conditions. However, long time series of observations are necessary to capture interannual streamflow variations and are problematic to obtain in rapidly changing and poorly gauged catchments. By incorporating a process-based model to construct AFDCs based on daily rainfall statistics and flow recession characteristics, the proposed approach is a first step toward addressing this challenge. Results indicate that prediction performance varies substantially across flow quantiles and that the current model fails to properly capture the interannual variability of low flows. Numerical analyses attributed these errors to nonlinearity in storage-discharge relation, rather than cross-scale streamflow correlations and non-Poissonian rainfall, explaining the origin of commonly observed heavy-tailed behavior in low flow quantiles. We present a case study on hydroelectric power generation, showing that faithfully capturing both interannual streamflow variability and recession nonlinearity has important implications for installation profitability.

Comments are closed.

    Categories

    All
    Armed Conflict
    Bangladesh
    Cambodia
    Catchment Science
    Causal Inference
    Change Attribution
    Climate Change
    Flow Duration Curve
    Food
    Game Theory
    Geostatistics
    Global Health
    Groundwater
    Himalaya
    Large Scale Land Aquisition
    Micro Hydropower
    Middle East
    Nepal
    Remote Sensing
    Reviews And Opinion Papers
    Rural Electrification
    Salinization
    Sociohydrology
    South Asia
    Stochastic Hydrology
    Streamflow Variability
    Switzerland
    Transboundary Water
    Water System Analysis
    Web Platform

    RSS Feed

Powered by Create your own unique website with customizable templates.